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Unusual Constraints in the Quantum Statistical 
Mechanics of Josephson Junction Systems 
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In order to apply quantum statistical mechanics to systems composed of 
Josephson junctions, the unconventional constraint of fixed "macroscopic wave 
function" magnitudes on either side of a junction must be accommodated. In 
order to use this information, the density matrix formalism must be extended to 
deal directly with probability distributions over general quantum states. As a 
result, in thermal equilibrium, the explicit temperature dependence becomes 
modified from the trivial 1/kT factors. 

KEY WORDS: Maximum-entropy formalism; Josephson junctions; quantum 
and information entropies. 

1. I N T R O D U C T I O N  

The behavior of systems composed of superconducting areas connected to 
each other via Josephson junction-type weak links is of present interest. 
Granular materials are common; indeed, high-To ceramics are also in 
general made up of superconducting grains separated by such links31~ 
There have also been investigations of less disorderly Josephson junction 
arrays, (2) motivated partially by possible device applications of such 
systems. (3~ What is common to these studies is a collection of junctions, 
typically in the presence of an external applied magnetic field. 

A first step in approaching such assemblages would be to determine 
equilibrium behavior, by their statistical mechanics, though eventually the 
transport properties are more interesting. While this has been done in a 
conventional manner,~4) the macroscopic quantum nature of the Josephson 
junction phenomenon allows development of a quantum statistical 
description that is subtly different in its results. 
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2. S T A T I S T I C A L  Q U E S T I O N S  A B O U T  J U N C T I O N S  

A detailed treatment of a junction between two superconductors 
separated by a thin insulating layer involves tunneling of electron pairs 
across the barrier. But with the pair creation and annihilation operators 
"referring to macroscopically occupied states, ''(5) a good approximation is 
available with macroscopic wave functions. I~=n~/Ze  i~ has the super- 
conducting pair density ns as its magnitude, and is uniform in space within 
type I superconductors. So a Josephson junction can be approximated by 
a coupled quantum two-state system, (6) with an overall wave function 
having the macroscopic wave functions on either side as components: 

{ n ll/2 ei~ 

The coupling strength is ~c, and e = q V/2, with V the applied voltage, is half 
the energy difference between pairs on either side. Also, in the following 
discussion, the normalization of ~ will be taken to be unity, n I + n 2 = 1, in 
order to keep the usual normalization of general quantum mechanics. In all 
expressions, energies and energy densities may be connected by insertion of 
a proper overall density factor. The Schr6dinger equation i O , O = H O  
(setting h =  1) can now be solved. Following Feynman, (6) a set of four 
differential equations is obtained (separating real and imaginary parts), 

01 = (nz /n l )  1/2 K cos q~ --~, 

( /~1)  1/2 ---~ (n ln2)  u2 ~c sin r 

02 = - (n l /n2)  l/z ~c cos r + 

(h2) 1/2 = - (n ln2)  1/2 tr sin ~b 
(2) 

which lead to the familiar Josephson junction current equation J = Jc sin 0, 
Jc being a critical current, and with O = 0 1 -  02 the superconducting phase 
difference across the junction. The argument is that the time dependence of 
the pair density represents a tendency  to change, the constant current flow 
in a steady state continually restoring the balance of pairs on either side. 
The energy is also easily found to be 

(r H I~)--- (nl--n2)~ + 2~c(nln2) 1/2 cos qt (3) 

giving rise to the familiar junction energy expression, E ~ cos ~b. 
The densities nl and n2 are determined by the temperature and 

material characteristics. Thus, r is the only true variable in the two-state 
system described, as the possible states r are restricted to those with fixed 
magnitudes nl and n2 for its two components in the basis of (1). In par- 
ticular, it is clear that in general the eigenstates of H are not physically 
realizable, and only a subset of the state space spanned by them satisfies 
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the constraint. Thus the question arises of how a form of quantum 
statistical mechanics could be applied to the junction, assuming that the 
macroscopic wave function picture remains valid. 

For  the statistical mechanics of Josephson junction arrays, the usual 
procedure is to take the classical system with an energy expression such as 
(3) for each junction, giving rise to variants of frustrated XY models. (2'4) 
With the Hamiltonian 

H= ~ Jucos(Oi-Oj--Ao. ) (4) 
(ij> 

(A~ arising from the presence of a magnetic field, to ensure gauge 
invariance), a partition function can be written down (4) 

Z =  f l-I dOi e-H(O)/kT (5) 
i 

The phases are treated as classical variables in a canonical ensemble. 
Any quantum accounting for the statistics will have to incorporate the 

rather peculiar constraint of a restriction of states to those with fixed pair 
densities on either side. These allowed states are not stationary under the 
dynamics determined by the H of (1), but the steady-state current flow 
argument applies. When ~ = 0, it is correct to say that the state does not 
evolve into another, by (2). Thus, when no external voltage is applied, any 
existing phase difference does not change, and the probability distribution 
for this difference will have to reflect the extra available information, on the 
fixed densities. 

A physically constrained system may be described by instantaneous 
results extended over all times, obtained by a constraint on allowed states 
instead of an explicit change in the Hamiltonian. A simpler example, with 
a classical gas in a box, might help to clarify matters. The statistical 
mechanics of a system with the same gas in a box half the size is related 
to the full-size problem. One can either change the physical constraints and 
solve the new problem directly, or restrict the allowed state space to those 
with molecules only in one half of the box. In this case, the extra informa- 
tion can be utilized to obtain an "instantaneous" probability distribution 
for the gas. Of course, in the full-size box this will not be a stationary 
distribution, as molecules will rapidly diffuse into the other half. But if 
this distribution is taken to apply at all times, one has the solution to the 
half-size problem. For  Josephson junctions, the results from (1) are used, 
ignoring the details of how physically a steady state is achieved for states 
nonstationary under the original Hamiltonian. 

822/71/1-2-21 
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3. S T A T E  P R O B A B I L I T I E S  

In the usual case, description of the statistical mechanics of a quantum 
system is done with the density matrix p = Z i P  i I~'D(~'il, where the P~ 
denote probabilities of being in states 10~), which need not be mutually 
orthogonal. This operator p contains all the information necessary to 
compute any operator expectation value, defined as the double average 

<(O)) ---~ P~(0~I O 10~) = Tr(pO) (6) 
i 

Thus, the initial task to face in a problem is setting up the density 
matrix, which is essentially a question of assigning probabilities that 
accurately reflect the information to be used about the system. This can be 
done by use of the "maximum-entropy" or "maxent" formalism, where we 
choose p such that it is the least informative among those satisfying our 
constraints. Shannon's information entropy (7) is a unique measure of 
missing information that we can then require to be maximized. 

With expectation value constraints, we easily obtain the desired 
maxent p's, using Lagrange multipliers and the entropy expression 
a = - T r  p log p, maximizing 

o- + 20(1 - (( 1 ))) + ~ )~(0~-  ((O~))) (7) 

with the 0i  denoting values that the expectations of the operators Oi are 
forced to be. The 2o condition is to normalize the probabilities, i.e., to have 
Tr p = 1. The solution is the familiar 

' (  ) p = ~ e x p  - ~'2~O~ (8) 

Z = Tr exp ( -  ~ 2iO~) = exp(2o) (9) 

becoming the canonical distribution when the expectation value of the 
Hamiltonian operator is constrained. 

Having summarized the use of the density matrix in mean value con- 
strained statistical mechanical problems, we must also consider the origin 
of the expression a--  - T r  p log p for the quantum entropy. For a classical 
system that has discrete states, the information entropy expression is 
straightforward, -~2ip~log pi, with the Pi the probabilities of each state. 
Various expressions have been proposed to extend this to the quantum 
case. Jaynes (8) discusses some, and decides on a as being the only 
satisfactory one. 
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The straightforward extension S = - Z i  Pi log Pi, with P~ the original 
probabilities of (in general nonorthogonal) states, is rejected in favor of a, 
"because the Pg are not in general the probabilities of mutually exclusive 
events. ''(8) If the state is known to be [0),  the probability of measuring it 
to be in state [~b) is [({b I 0 ) I  2. However, keeping in mind the conceptual 
distinction between "being in" and "observed in," there is no reason that 
working with the state probabilities P(0)dO should be invalid. 

If the information we are given, and that we hope to extract, is purely 
in the form of expectation values, the density matrix obtained by maximiz- 
ing r will provide, most economically, all that is needed. In almost all cases 
of physical interest, expectations are all we have, or, certain symmetry 
conditions exist that can be used to restrict states that provide a diagonal 
basis for p, such as fermionic or bosonic requirements. These, too, are 
easily accommodated within the conventional framework. 

But the statistical mechanics can be formulated at the level of the most 
basic available description, that of state probabilities. That this more 
general formulation is physically equivalent to working with the density 
matrix entropy expression r when applicable, will be demonstrated in the 
following sections. Such an approach, which corresponds to the classical 
"summing over states" procedure, is necessary for the Josephson junction 
problem. A restriction on allowed states is easy to implement in such a 
picture. But this is not a constraint expressible in the form of projection 
operator expectations, so trying to obtain a density matrix directly via 
maximizing a is impossible. 

4. M A X I M U M  ENTROPY ON P ( ~ )  

An expression for information entropy as a functional of P(0) is 
needed; this will be of the form 

SIP(O)]  = - f dO P(O)log P(O) (10) 
M(O) 

where M(0 ) is a prior probability distribution, necessary for continuous 
distribution entropies, to make the expression invariant under changes 
of variable. (9}'2 In an orthonormal basis, [ 0 ) = ~ c i  [i), the 0 in (10) 
representing a set of such coefficients ci. Thus, with the normalization 
constraint, 

i j 

2 Invariance under a transformation group is taken to be a rigorous way to define an 
uninformative prior. 
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The prior M(0) is analogous to the Bayesian "uninformative prior," 
the distribution in the case that no information at all is available; thus the 
expression (10) is an entropy relative to an uninformed distribution. 
In most cases of physical interest, a requirement of invariance under a 
transformation group sufficiently describes a condition of indifference that 
fixes this prior. (9) 

MOP) can be computed by realizing that in the completely uninformed 
case, there can be no difference in what orthogonal basis is selected to give 
the coefficients ci; i.e., MOP) is invariant under changes of variable brought 
about by the action of the unitary group U(n) on state vectors, n being 
the dimensionality of the state space. The normalization condition is that 
~2 Icjl 2= 1 has state vectors lying in an "n-sphere" in cgn, where one state 
is transformed to another by the action of members of U(n). Therefore, 
M(O) will have to be a constant on this surface, corresponding to the 
intuitive notion of the probability being equal for all states, there being no 
reason to discriminate between them. So (10) becomes 

log M -  f dO P(~9) log P(O) (12) s[Ip] 

The constant log M can be ignored, as we are interested in the maxima 
of S. 

It has to be demonstrated, for consistency, that when S is maximized 
subject to expectation value constraints, the result is physically equivalent 
to what would be obtained through a conventional cr maximization. For 
this, it will suffice to show that the density matrix obtained from a 
maximum-S probability distribution is equal to the one in (8). 

Maximizing subject to constraints 

gives 

1 \ 
14, ) )  ,cO P(O) dO = ~ e x p  ( -  ~ ?i(OI Oi 

Q=f dOexp(- ~,s(OI 0 , 1 0 ) )  

Q is the analogue of the partition function, in that 

O log Q 
(4 o , > >  = 

gTi 

(14) 

(15) 
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By using the Fourier integral representation for the delta function in (11), 
and then doing the contour integral after the Gaussian integrals, we can 
obtain Q in closed form: 

e - F ,  
Q 'v '  

(16) 
= ~  Flj~, (s 

with a multiplicative constant ignored. The Fi are the (nondegenerate) 
eigenvalues of the operator F = ~  7i0i. In general the density matrix 
elements are obtainable by 

0 log Q 
(17) 

Pig - -  c3F~i 

The expressions obtained by application of (17) are not such that 
equivalence of the density matrices obtained through maximization of cr 
and S, p(~) and p(S) is immediately obvious beyond the fact that they are 
diagonal in the same basis. However, this can be demonstrated. In the 
following, only one operator is taken to be fixed in expectation, the 
Hamiltonian, with eigenvalues e i. This is for the sake of clarity and 
concreteness only, and can be readily generalized. 

The maximum S density matrix and the canonical density matrix each 
have a single parameter, determined by the energy expectation constraint: 

~? log Q plS)(Ts~, ye2,...)- 
O(Tei) 

(18) 
r log Z 

P ~ ) ( f l g l ,  f l 8 2 , " - ) =  - -  

r  61ogZ ~ (19) 

0~ M 

The fl in pCO) is the usual inverse temperature. If pl~)(fle)= p~s)(Te) is to 
hold for all i, each of the functions ?(fl) implicitly defined by these relations 
must be identical. This will be ensured by 

o, =' 

Vi, j (20) 
0~ 0B ~7 & ' 

as the above implies ~77/r is the same for each L and neither density matrix 
contains terms independent of their parameters, 7 or /~. Using (18) for 
the p's, interchanging the order of differentiation, and then using (19) 
establishes the desired result. 
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While a 7 can be found to give any density matrix parametrized by a 
particular inverse temperature fl, in general the function ?(fl) cannot be 
obtained analytically. 

State-level statistical descriptions are thus equivalent to the density 
matrix form when expectation value constraints are present. The parameter 
7 is physically the functional equivalent of the familiar inverse temperature. 
If only basic quantum mechanics were under consideration, the above 
would be only a theoretical exercise relating standard and quantum infor- 
mation entropies. But the Josephson junction equilibrium problem, as 
stated, is isomorphic to basic quantum theory, but is macroscopic in nature 
and allows for nonstandard information to be incorporated into the 
problem. Thus the state-level formulation becomes necessary. 

5. SEPARABIL ITY A N D  T E M P E R A T U R E  

For a Josephson junction, the distribution on the allowed state space 
is akin to the canonical one, i.e., P(O) dO oc e -~<H> dO for allowed states. 
The new "partition function" QR is determined by (14) with 

2 

f d :f I1 de, icil21 (211 
i = l  

to reflect the special constraint. This results in 

QR oc (nln2) 1/2 e ";("l-"2~Io(2y~c(nln2) t/2) (22) 

The Io is a modified Bessel function. A clearer understanding results if it is 
noted that we have essentially obtained a distribution for the phase ~b, 

p(q~) d~b ~ exp[ --2y~c(nln2) 1/2 cos ~b] dO (23) 

Here it would be useful to make a connection to more physically accessible 
quantities. The coupling energy for a small junction and nl =n2 is E =  
Jo cos ~b, with Jo = I,./2e and Ic the critical current, for which approximate 
expressions exist. (1~ Thus, unspecified quantities such as ~: can be replaced, 
using (2) or (3). So a more convenient form for (23) would be 

p(O)dfb oc e-~J~176176 (24) 

The above suggests that the junction is well described by a classical 
phase and the XY-type models, with partition function (5) and p(~b)&boc 
exp(- f i Jo  cos ~b)&b, so that in (24), y would be playing the role of the 
inverse temperature. However, while ? and fl = 1/kT are both constants, 
they cannot be identified or said to be proportional. The cos ~b energy 
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expression does not stand for the eigenvalue of a Hamiltonian, but is a 
restricted state average of it. Thus there is a close similarity to a classical 
canonical distribution, but the parameter 7 is nontrivially related to ft. 
It can be seen that 

lira 7 = oe, lira 7 = 0 (25) 
/ ~ o  / ~ 0  

as it must be, but the general expression for 7(fl) can be complicated. 
The concept of "separability" is useful in understanding this difference, 

which reflects a distinction between classical and quantum states. Consider 
the description of a state in a combined system made up of A and B that 
have individual states SA and SB. The classical case is stated as "A in SA 
and B in Se,"  and the description is separable into distinct subsystem 
descriptions. But for quantum states, superposition intervenes, giving 
SA~ = Y'. [SA SB }. This cannot be equated to a product of subsystem states; 
thus the quantum state-level description is nonseparable. Density matrix 
descriptions, in contrast, are separable, as PAB=PA@pB, since the 
combined basis states are products of subsystem basis states. 

Consider thermal equilibrium between two systems that have negli- 
gible interactions, that are nonetheless present so as to make equilibrium 
possible. In such a case, the total energy expectation will be fixed, and 
probabilities will be a function of H A "4- HI3: 

((HA + HB}}A + B = ((HA }}A + ~ + ((HB}}A + (26) 

where the A + B subscript indicates that the expectation is in the combined 
system. For  thermal equilibrium, we require that the individual subsystem 
expectations should not change if they become separated, or 

~HA,B~A+B = ~HA,B~A,B (27) 

With the separable descriptions, such as the density matrix, this leads 
immediately to equalization of temperatures, (H) flA = fiB, from 

e ,(eA+eB)= e-,Ae~e-~BEB (28) 

For  the nonseparable case, fl --* 7, and in general 7A ~ 7B- But the argument 
using (26) and (27) can still be followed. 

One of the systems in consideration should be a collection of 
Josephson junctions, with phase probabilities described by a parameter 7- 
This will be taken to be in thermal equilibrium with a system that has a 
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known temperature dependence of its parameter 7'. The simplest choice 
would be a two-state system, where by applying (19) we get 

1 
- -  (1 - 7'E coth ?'E) = - E  tanh fiE (29) 

_ E being the energy eigenvalues. The total system "partition function" is 

Q = f d~ e x p [ - ~ ( H >  - ~7'(H' >] (30) 

We can now require that the component energy averages found through 
the total system distribution match the separate system expectations: 

~logQ'07, ~logQ0[ ~=< (31) 

establishes the connection to ft. With 

log QR 0log Q ~= (32) 

I ' ' ' ' I ' ' ' ' I ' ' ' 

restricted / 

/ /  []O• normal 
6 

/ [ ] o J  " 
2 ~ 1 7 6  

0 T , , , , I , , , , I , , , 

0 0.5 I 

Fig. 1. 7(~) for the component-magnitude constrained Josephson junction, which appears 
shifted compared to the analogous function for a two-state system with only an energy 
expectation constraint, Eq. (29). The parameter values were n I =n2=0.5; E= 1, ~ =0, and 
~c =0.1, in arbitrary energy units. 
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we finally have a relation between 7 and ft. Setting ~ = ~7' in Q is necessary 
to have a true energy-expectation constraint. Figure 1 illustrates the result 
of such a calculation for the case of a single junction. 

6. E X P E R I M E N T A L  POSSIBIL IT IES 

The main result of theoretical interest, addressing conceptual issues in 
fundamental statistical mechanics, is the demonstration that a state-level 
description, using the standard information entropy, is physically equiv- 
alent to the usual density matrix ~formulation for quantum statistical 
mechanics. It can be said that in this way the quantum entropy expression 
a = - T r  p log p can be derived from the usual information entropy as a 
physically equivalent but separable, and thus much more convenient, 
expression. But the most general state-level treatment also opens up the 
possibility of handling unusual constraints in macroscopic approximations 
that give theories formally identical to basic quantum mechanics. 

Weakly linked superconducting clusters, modeled as Josephson junc- 
tion arrays, may provide such a case, necessitating a formulation of its 
statistical mechanics at the state-probability level, as the macroscopic 
quantum nature of the system provides us with usually unavailable infor- 
mation. This kind of question would be difficult to answer without use of 
maximum-entropy ideas, if at all possible. And it can be said that the above 
has confirmed that frustrated XY-type models (12~ can be approximately 
realized with junction arrays, with a more complicated temperature 
dependence than usually assumed. 

The significance of the main physical result relating to Josephson junc- 
tions, the 7-fl difference, can be explored further. This is a novel, purely 
statistical result, arising from the difference between classical and quantum 
states. As ~' appears in (24), and any physical effect would be a result of 
this, it may seem that an effective "renormalization" of J0 would account 
for it. But there are independent means of measuring this energy, beyond 
the fact that only statistical considerations enter into determination of o/(fl). 
Thus, certain equilibrium thermodynamic results, such as work on 
diamagnetic susceptibilities of granular systems, (4) will have to be modified 
in the way that temperature dependence is exhibited. 

It is difficult to say that a clear experimental confirmation of the quan- 
tum nature of states via the appearance of 7 would be readily possible. The 
theoretical results on Josephson junction arrays tend to be qualitative when 
applied to real systems, and thus the relatively minor effects of unusual 
statistics could easily be washed out in comparing theories. To further com- 
plicate matters, in real systems, the single electron current or the junction 
capacitance cannot be easily ignored as we have done, since these will 
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change the behavior significantly/13'3) Therefore one is forced to conclude 
that the practical effect of the y-/~ difference is negligible in most materials 
of interest, and an experiment would have to be specifically designed to 
confirm any such effect. Also, equilibrium properties are of comparatively 
less interest than the dynamics of junction arrays under current flow. In 
such cases, y becomes quite irrelevant. 

However, the complications presented by large collections of 
Josephson junctions could be mostly avoided if an idealized single junction 
were experimentally well approximated. With no external voltage source 
but finite temperature, the phase difference distributions in (23) and the 
classical form with /~ instead of 7 can be compared. The dependence of 
on temperature would be similar to that in Fig. 1, and though the 
parameters for a real material may result in a less exaggerated difference 
from p, a nonnegligible effect can still be expected. 

If the experimental difficulties are surmountable, the measurable quan- 
tity of interest would be the current at zero voltage, which is bounded by 
the junction critical current; I =  Ic sin ~b with ~b stationary. (1~ The distribu- 
tion of this current value over many measurements would be predicted 
from (23). 

One possibility would be to connect the two sides of the junction with 
the same superconducting material, forming a continuous superconducting 
loop except for the junction itself. The persistent current I in the absence 
of an external driving circuit would then not be subjected to resistive decay, 
and could be measured directly. Provided that the loop is large enough for 
phase coherence to disappear, the macroscopic phases on either side of the 
junction can be taken to vary independently. Alternately, if a nonsuper- 
conducting connection between the junction elements is utilized, measure- 
ment of transient current behavior might be successfully related to the 
zero-voltage phase difference. The complexities in this particular approach 
arise from the necessity of current flow to establish a stationary phase 
difference, while resistive losses are also present. 

A more extensive discussion of possible experimental details would be 
beyond the scope of this paper, but the conceptual basis for a test of the 
theory is in obtaining a good approximation for the zero-voltage current 
through a near-ideal Josephson junction. Such an experiment would also 
investigate the limits of applicability of the Feynman approximation (1) 
that is the basis for the discussion presented. A failure to confirm the 
expected phase distribution would be directly attributable to its 
breakdown. As this approach is a much encountered starting point for 
theoretical work about Josephson junctions, an experiment similar to that 
proposed could be of use in exploring aspects of Josephson junctions that 
have implications beyond statistical properties. 
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